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OMPUTER SIMULATION EXPERIMENTS ARE ESPECIALLY

GOOD TOOLS FOR HELPING STUDENTS UNDERSTAND BA-

SIC PRINCIPLES OF PHYSICS. IN THIS AREA, I HAVE DEVELOPED A

PACKAGE OF SIMULATION PROGRAMS CALLED PHYSICS OF OSCILLA-

tions (www.aip.org/pas). One of its pro-
grams is suited for examining the phe-
nomenon of parametric resonance in a lin-
ear system. The program simulates the
parametric excitation of the rotary oscil-
lations of a mechanical torsion-spring
pendulum whose moment of inertia is
subject to periodic variations.

In this installment of the “CSE in Ed-
ucation” department, I discuss the con-
ditions and characteristics of parametric
resonance, including parametric regen-
eration. Instructors and their students
can also use the Physics of Oscillations
package to explore other problems, such
as ranges of frequencies within which
parametric excitation is possible and sta-
tionary oscillations on the boundaries of
these ranges. The simulation experi-
ments complement the analytical study
of the subject in a manner that is mutu-
ally reinforcing.

The simulated physical system

Oscillations in various physical systems
can differ greatly in physical nature, but
they also have much in common. It is
easier to understand common laws of os-
cillation processes if we analyze them in
the most plain and obvious examples,
such as in mechanical systems that are
accessible to direct visual observation.

For this purpose, the simulation experi-
ments this article describes deal with a fa-
miliar mechanical system—the torsion-
spring oscillator, similar to a mechanical
watch’s balance device.

Figure 1a shows a schematic image of
the apparatus. It consists of a rod on
which two identical weights are bal-
anced. The rod, to which an elastic spi-
ral spring is attached, can rotate about an
axis that passes through its center. The
spring’s other end is fixed. When the rod
turns about its axis, the spring flexes. The
spring’s restoring torque —D¢ is propor-
tional to the rotor’s angular displacement
¢ from the equilibrium position.

The weights can shift simultaneously
along the rod in opposite directions into
other symmetrical positions to keep the
rotor balanced as a whole. When the
weights shift toward or away from the
axis, the moment of inertia decreases or
increases respectively. Under certain
conditions, periodic modulation of the
moment of inertia can cause the rod’s
(initially small) natural rotary oscillations
to grow.

Parametric excitation is also possible in
an electromagnetic analog of the spring
oscillator—that is, in a series LCR circuit
containing an inductor (a coil of induc-
tance L), a capacitor C, and a resistor R

(see Figure 1b). Oscillating current can
be excited by periodic changes of the ca-
pacitance if we periodically move the
plates closer together and farther apart,
or by changes of the coil’s inductance if
we periodically move an iron core in and
out of the coil. Such periodic changes of
the inductance closely resemble the
changes of the moment of inertia in the
mechanical system I discussed earlier. We
use a mechanical system for the simula-
tions primarily because its motion is eas-
ily represented on the computer screen
and shows directly what is happening.
Such visualization makes the simulation
experiments very convincing and easy to
understand, greatly helping our students
develop their physical intuition.

General concepts

According to the conventional classifica-
tion of oscillations by their method of ex-
citation,! oscillations are called free or
natural when they occur after some ini-
tial action on an isolated system that is
then left to itself. Natural oscillations in
a real system gradually decay because of
the energy dissipation, and the system
eventually comes to rest in the equilib-
rium position.

Oscillations are forced if an oscillator is
subjected to an external periodic influence
whose effect on the system can be ex-
pressed by a separate term—a given peri-
odic function of the time—in the differ-
ential equation of motion describing the
system. After a transient process finishes,
the forced oscillations become stationary
and acquire the period of the external in-
fluence (steady-state forced oscillations).
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Figure 1. Computer simulation: (a) the
torsion-spring oscillator with a rotor
whose moment of inertia is subjected to
periodic variations; (b) an analogous
LCR circuit with a coil whose inductance
is modulated.

When the external force’s frequency is
close to the oscillator’s natural frequency,
the amplitude of steady-state forced oscil-
lations can reach significant values. This
phenomenon is called resonance. Found
everywhere in physics, resonance has wide
and various applications.

Another way to excite nondamping os-
cillations consists of a periodic variation
of some system parameter to which the
system’s motion is sensitive. For example,
let a restoring force I = —kx arise when
the system is displaced through some dis-
tance x from the equilibrium position,
and let the parameter k change with time
because of some periodic influence: & =
k(t). In the differential equation of mo-
tion for such a system,

mi = ~k(t)x, i +w'x =0
O,_ k0O 1)
m

where the coefficient & of x is not con-
stant: it explicitly depends on time. Sim-
ilarly, the coefficients in the differential
equation are not constant if the inertial
parameter 72 depends on time. Oscilla-
tions in such systems are essentially dif-
ferent from both free oscillations (which
occur when the coefficients in the homo-
geneous differential equation of motion
are constant) and forced oscillations.

With periodic changes of parameters &
or ), the corresponding differential equa-
tion (Equation 1) is called Hill’s equation.
When the amplitude of oscillation caused
by the periodic modulation of some para-
meter increases steadily, we refer to the
phenomenon as parametric resonance. In
parametric resonance, equilibrium be-
comes unstable and the system leaves it
(after an arbitrarily small initial distur-
bance), executing oscillations whose am-
plitude increases progressively.

"The most familiar example of paramet-
ric resonance is a child swinging on a
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swing. The swing is a physical pendulum
whose reduced length changes periodi-
cally as the child squats at the extreme
points and straightens when the swing
passes through the equilibrium position.
However, the torsion-spring oscillator I
described earlier is a simpler (a linear) sys-
tem and hence better suits for the initial
investigation of parametric resonance than
the pendulum with a modulated length.
That’s because we use a nonlinear differ-
ential equation to describe the latter: the
restoring torque of the force of gravity for
the pendulum is proportional to the sine
of the deflection angle.

The causes and characteristics of para-
metric resonance are considerably differ-
ent from those of the resonance occur-
ring when the oscillator responds to a
periodic external force. Specifically, the
resonant relationship between the para-
meter’s frequency of modulation and the
system’s mean natural frequency of oscil-
lation is different from the relationship
between the driving frequency and the
natural frequency for the usual resonance
in forced oscillations. The strongest
parametric oscillations are excited when
the cycle of modulation repeats twice
during one period of natural oscillations
in the system—that is, when a paramet-
ric modulation’s frequency is twice the

()

system’s natural frequency. Parametric
excitation can occur only if at least weak
natural oscillations already exist in the
system. And if there is friction, the para-
meter’s amplitude of modulation must
exceed a certain threshold value to cause
parametric resonance.

The simulation programs in my soft-
ware package consider two different cases
of parametric modulation:* a square-
wave variation and a smooth variation of
the moment of inertia (specifically, a si-
nusoidal motion of the weights along the
rod). With the square-wave modulation,
abrupt, almost instantaneous increments
and decrements of the moment of inertia
occur sequentially, separated by equal
time intervals. We denote these intervals
by 772, so that T equals the period of the
variation in the moment of inertia (the
period of modulation).

The forced motion of the weights
along the rod doesn’t change the angular
momentum because no torque is needed
to produce this displacement. Thus the
resulting reduction in the moment of in-
ertia is accompanied by an increment in
the angular velocity, and the rotor ac-
quires additional energy. The greater the
angular velocity, the greater the incre-
ment in energy. This additional energy
comes from the source that moves the
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Peculiarities of parametric resonance

The growth of the amplitude and hence of the energy of oscil-
lations during parametric excitation is provided by the work of
forces that periodically change the parameter. Maximal energy
transfer to the oscillatory system occurs when the parameter
changes twice during one period of the excited natural oscilla-
tions. But the delivery of energy is also possible when the para-
meter changes once during one period, twice during three pe-
riods, and so on. That is, parametric resonance is possible when
one of the following conditions for the frequency w (or for the
period T) of modulation is fulfilled:

w=2wy/n, T=nTy?2, (A)
wheren =1, 2, .... For a given amplitude of modulation of the
parameter, the higher the order n of parametric resonance, the
less (in general) the amount of energy delivered to the oscillat-
ing system during one period.

Parametric resonance is possible not only at the frequencies
wh, given in Equation A, but also in intervals of frequencies lying
on either side of the values a, (in the ranges of instability). These
intervals become wider as the range of parametric variation is
extended—as the depth of modulation increases. We define the
dimensionless depth of modulation, in the case of the rotor, as
the relative difference in the maximal and minimal values of its
moment of inertia, M = (Imax — Imin)/(Imax * Imin), @and in the
analog circuit, as the fractional difference in the inductance of
the coil.

An important distinction between parametric excitation and
forced oscillations relates to how energy growth depends on
the energy already stored in the system. While for forced excita-

tion, the increment of energy during one period is proportional
to the amplitude of oscillations—that is, to the square root of
the energy—at parametric resonance, the increment of energy
is proportional to the energy stored in the system.

Energy losses caused by friction (unavoidable in any real sys-
tem) are also proportional to the energy already stored. With
direct forced excitation, an arbitrarily small external force gives
rise to resonance. However, energy losses restrict the ampli-
tude’s growth because these losses grow with the energy faster
than does the investment of energy arising from the work done
by the external force.

With parametric resonance, both the investment of energy
caused by a parameter’s modulation and the frictional losses
are proportional to the energy stored (to the square of the am-
plitude), so their ratio does not depend on amplitude. There-
fore, parametric resonance is possible only when a threshold is
exceeded, that is—when the increment of energy during a pe-
riod (caused by the parametric variation) exceeds the amount
of energy dissipated during the same time. To satisfy this re-
quirement, the depth of modulation must exceed some critical
value. This threshold value of the depth of modulation depends
on friction. However, if the threshold is exceeded, the frictional
losses of energy cannot restrict the amplitude’s growth. In a lin-
ear system, the amplitude of parametrically excited oscillations
must grow indefinitely.

In a nonlinear system (for example, a pendulum whose length
is modulated), the natural period depends on the amplitude of
oscillations. If conditions for parametric resonance are fulfilled at
small oscillations and the amplitude begins to grow, the condi-
tions of resonance become violated at large amplitudes. In a real
system, nonlinear effects restrict the growth of the amplitude
over the threshold.

weights along the rod. But, if the weights
are instantly moved apart along the ro-
tating rod, the rotor’s angular velocity
and energy diminish. The decrease in
energy transmits back to the source. For
increments in energy to occur regularly
and exceed the amounts of energy
returned—that is, so that as a whole, the
modulation of the moment of inertia
regularly feeds the oscillator with en-
ergy—the period and phase of modula-
tion must satisfy certain conditions.

For example, suppose that we abruptly
draw the weights closer to each other at
the instant at which the rotor passes
through the equilibrium position, when
its angular velocity is almost maximal.
Then, we move them apart almost at the
instant of extreme deflection, when the
angular velocity is nearly zero. The an-

gular velocity increases in magnitude at
the moment the weights come together,
and vice versa. Because the angular mo-
mentum is zero at the moment we move
the weights apart, this particular motion
causes no change in the rotor’s angular
velocity or kinetic energy. Thus the
square-wave modulation of the moment
of inertia with a period half the mean
natural period of rotary oscillations gen-
erates a steady growth of the amplitude,
provided that we choose the modula-
tion’s phase as I've described.

Figure 2a shows the graphs of the ro-
tor’s angular displacement (top) and an-
gular velocity (bottom) (together with the
square-wave graphs of variation of the
moment of inertia) for the case in which
we draw the weights closer to and farther
apart from each other twice during one

mean period of the natural oscillation.

Clearly, the oscillator’s energy in-
creases efficiently not only when two full
cycles of variation in the parameter occur
during one natural period of oscillation,
but also when two cycles occur during
three, five, or any odd number of natural
periods. We shall see later that the deliv-
ery of energy, although less efficient, is
also possible if two cycles of modulation
occur during an even number of natural
periods (resonances of even orders).

If the changes of a parameter are pro-
duced with the just-mentioned periodic-
ity but not abruptly, the influence of these
changes on the oscillator is qualitatively
quite similar, although the efficiency of
the parametric delivery of energy (at the
same amplitude of modulation) is maxi-
mal for the square-wave time dependence.
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Figure 2. Graphs
of the rotor’s an-
gular displace-
ment (top) and

velocity (bottom):
(a) at square-wave
modulation of its

moment of inertia

The case of a smooth modulation of some
parameter is important for practical appli-
cations of parametric resonance. Figure
2b plots the parametric oscillations of the
torsion pendulum excited by a sinusoidal
motion of the weights along the rod.

"To provide a growth of energy during a
smooth modulation of the moment of in-
ertia, the weights’ motion toward the axis
of rotation must occur while the rotor’s
angular velocity is on the average larger
than it is when we move the weights apart
to the ends of the rod. Otherwise the
modulation of the moment of inertia aids
the damping of the natural oscillations.

Figure 3 shows the expanding phase
trajectories for the parametric swinging
conditions of the principal resonance un-
der the square-wave and smooth modu-
lation. These phase trajectories corre-
spond to the time-dependent graphs of
increasing oscillations shown in Figure 2.

Parametric excitation is possible only
if one of the energy-storing parameters,
D or I (C or L in the case of an LCR cir-
cuit), is modulated. Modulation of the re-
sistance R (or of the damping constant y
in the mechanical system) can affect only
the character of the oscillator damping.
It cannot generate an increase in the am-
plitude of oscillations.

The “Peculiarities of parametric reso-
nance” sidebar discusses several impor-
tant differences that distinguish para-
metric resonance from the ordinary

resonance caused by an
external force acting di-

in the vicinity of
the principal para-
metric resonance;
(b) at a smooth
modulation of its
moment of inertia
in conditions of
the principal para-
metric resonance.

rectly on the system.

The threshold of

parametric excitation
We can use arguments em-
ploying the conservation of

energy to evaluate the
modulation depth corre-

sponding to the threshold
of parametric excitation.
For square-wave modula-
tion, let us first find the in-
crement of the rotor kinetic energy oc-
curring during an abrupt shift of the
weights toward the axis, when the mo-
ment of inertia decreases from the value
I, = Iy(1 + m) to the value [, = Ij(1 — m).
During abrupt radial displacements of
the weights along the rod, the angular
momentum L = I@ of the rotor is con-
served: ;9| = I, ,, whence for the ratio
of the angular velocities before and after
the change of the moment of inertia, we
get ¢o/¢1 =1/ =(1 + m)/(1 —m). For
the increment AE of the kinetic energy,
By = 19%/2 = L*/(2]) we can write

e gl _1g
Ay H=m  1+mi
zszkin, (2)

If the event occurs near the rotor’s equi-
librium position, when the total energy E

Figure 3. Phase trajectories of parametric oscillations
whose time-dependent graphs are shown in Figure 2.

of the pendulum is approximately its ki-
netic energy Ey;,, we see from Equation
2 that the fractional increment of the to-
tal energy AE/E approximately equals
twice the value of the modulation depth
m: AE/E = 2m.

When the frequencies and phases have
values that are favorable for the most ef-
fective delivery of energy, the abrupt dis-
placement of the weights toward the ends
of the rod occurs at the instant when the
rotor attains its greatest deflection (or is
very near it). At this instant, the rotor’s
angular velocity and kinetic energy are al-
most zero, so this radial displacement of
the weights into their previous positions
causes no decrement of the energy.

For the principal resonance (7 = 1), the
investment of energy occurs twice during
the natural period 7§ of oscillations. That
is, the relative increment of energy AE/E
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during one period approximately equals
4om. A process in which the increment of
energy AE during a period is proportional
to the energy stored E (AE = 4mE) is
characterized by the exponential growth
of the energy in time:

E(t) = Ey exp(ar). 3)

In this case, the index of growth a is
proportional to the moment of inertia’s
depth of modulation #z: o = 4m/T,. When
the modulation is exactly tuned to the
principal resonance (T = T/2), friction
alone causes the decrease of energy. The
following expression describes energy dis-
sipation caused by viscous friction during
an integral number of cycles:

E(t) = Ey exp(-2y), @
where the damping constant yequals the
inverse time T of fading of natural oscil-
lations in the system: y = 1/7. Equation 4
yields the relative decrease of energy
AE/E during a time interval ¢ containing
an integral number of natural periods:
AE/E = =2yr. We equate the relative in-
crement 47 of energy during one period
(caused by the square-wave parameter
modulation) to the relative energy losses
due to friction 2 yT;. Thus, we obtain the
following estimate for the depth of mod-
ulation’s threshold (minimal) value #z,;,
corresponding to the excitation of the
principal parametric resonance:

Mmin = Y To/2 = T1/2Q). ®)
We introduced the dimensionless quality
factor Q = 7Ty = wy/(2)) to characterize
friction in the system. The parametric os-
cillations occurring at the threshold con-
ditions (Equation 5) have a constant am-
plitude in spite of the energy dissipation.
We call this mode of steady oscillations
parametric regeneration. The mode of para-
metric regeneration is stable with respect

to small variations
in the initial condi-
tions. However, the

[} | i

o i
oscillations fade or = —-r - g II'. — R
increase indefinite- \ ."1?._ II'F In'IF._I I'| i
ly if we change 0 F 1 | 3 |

slightly either the
modulation’s depth
or period or the -
quality factor.

For third-order
resonance  (for
which T = 3Ty/2),
the depth of mod-
ulation’s threshold
value is approximately three times greater
than its value for the principal resonance:
Mmin = 37(2Q). In this resonance, two
modulation cycles occur during three full
periods of natural oscillations, so almost
the same investment of energy occurs
during an interval that is three times
longer than the interval for the principal
resonance.

Resonances of even orders are weaker.
For example, the threshold value of the
depth of modulation for the second res-
onance (T'= T) equals 7z,;, = V2/Q (see
the user’s manual,” p. 85).

When the depth of modulation exceeds
the threshold value, the (averaged over the
period) energy of oscillations increases ex-
ponentially in time. Equation 3 again de-
scribes the energy’s growth. However, the
growth index a is determined by the
amount by which the energy delivered
through parametric modulation exceeds
the simultaneous losses of energy caused
by friction: o = 4m/T, - 2. The energy of
oscillations is proportional to the square
of the amplitude. Therefore, the ampli-
tude of parametrically excited oscillations
also increases exponentially in time (see
Figure 2a): a(t) = agexp(Bt) with the index

B = a/2 (one half the index a of the
growth in energy). For the principal reso-
nance, we have B=2m/Ty - y=may/T-V.

"To find the threshold of parametric ex-

Figure 4. Stationary parametric oscillations at the upper
boundary of the principal interval of instability (near T =
T./2): (a) without friction; (b) with friction.

citation by a smooth (sinusoidal) motion of
the weights along the rod, we should cal-
culate the work done (during one period
of oscillation) by the source that makes
the weights move periodically and deter-
mine those conditions under which this
work is positive and exceeds the energy
losses caused by friction. We assume that
the distance / from the axis of rotation is
I®) =y (1 + msin w1). (6)
Here /; is the mean distance of the
weights from the axis of rotation, and
is the dimensionless amplitude of their
harmonic motion along the rod (7 < 1).
Note that 7z is the modulation depth of
the distance /(f), while the modulation
depth m of the moment of inertia I(z) is
approximately twice as great (m = 2m if m
<< 1), because the moment of inertia is
proportional to the square of the distance
of the weights from the axis of rotation.
Calculating the threshold of parametric
resonance for the sinusoidal motion of the
weights is somewhat more complicated
than for the square-wave modulation con-
sidered above. You can find details of the
calculation in the software package’s user
manual (pp. 133-135).? The calculation
yields 72 = 2/Q for the depth of modula-
tion of the moment of inertia at the
threshold condition. This value is some-
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Figure 5. Intervals of parametric excitation at the square-
wave modulation of the moment of inertia in the absence of

friction.

what greater than m = W/ (2Q) given by
Equation 5 for square-wave modulation,
in agreement with the qualitative conclu-
sion I've discussed that the square-wave
modulation provides more favorable con-
ditions for the transfer of energy to the os-
cillator from the source that moves the
weights along the rod.

The frequency ranges of
parametric excitation

The threshold for the principal paramet-
ric resonance (for which T'= T(/2) given
by Equation 5 is valid for small values of
m. For large values of the modulation
depth 7, the notion of a natural period
needs a more precise definition. Let Ty =
2711/ @y = 2mliyp be the rotor’s period of
oscillation when the weights are fixed at
some middle positions that correspond to
a mean value of the moment of inertia I,
= (Lpay + Imin)/2. The period is somewhat
longer when the weights are moved fur-
ther apart: Ty = ToV1+m =Ty(1 + m/2).
The period is shorter when the weights
are moved closer to one another: T, =
ToV1-m =Ty(1 = m/2).

It is convenient to define the average
period T, not as the arithmetic mean (7}
+ T5)/2, but rather as the period that cor-
responds to the arithmetic mean fre-
quency @,, = (W + w)/2, where w; =
20T, and w, = 277T5. So we define T,
by the relation

_2n_ 2T,
Yow, T+, @)

av
The period of modulation 7, which is
exactly tuned to any of the parametric res-
onances, is determined not only by the or-

lation #2. "To satisfy
the resonant con-
ditions, the incre-
ment in the phase
of natural oscilla-
tions during one cycle of modulation must
equal 77277373 ..., n7% ... During the first
half-cycle, the phase increases by w772
and by w772 during the second half-cy-
cle, and instead of the approximate condi-
tion of resonance (Equation 2), we obtain

B T A
2
L )Y ®)
w,, 2

Thus, for a parametric resonance of
some definite order 7, we can express the
condition for exact tuning in terms of the
harmonic mean period T, of the two nat-
ural periods, 7 and 73, defined by Equa-
tion 7. This simple condition is 7, =nT,/2.

An infinite growth of the amplitude
during parametric excitation in this linear
system is possible not only at exact tuning
to one of resonances but also in certain
intervals surrounding the resonant values
T=T,/2,T=T,,T=3T,/2,.... Gen-
erally, the intervals’ width increases with
the depth of modulation. Outside the in-
tervals, a torsion pendulum’s equilibrium
position is stable—that is, the amplitude
does not grow and the oscillations damp
if there is friction in the system.

When the period of modulation T cor-
responds to one of the boundaries, the
oscillations can be stationary. For the
square-wave modulation, we can repre-
sent these stationary oscillations as an al-
ternation of free oscillations with the pe-
riods T} and T, occurring during the
moment of inertia’s intervals of con-
stancy. The graphs of such oscillations
are formed by joined segments of sine
curves symmetrically truncated on both

sides in the absence of friction, and by
segments of damped sine curves of nat-
ural oscillations otherwise (see Figure 4,
whose upper part corresponds to an ide-
alized frictionless system). Without fric-
tion, the abrupt increments of the veloc-
ity occurring twice during a period are
equal to the decrements caused by the
modulation of the moment of inertia.
With friction, the increments are greater
than decrements and compensate for the
energy losses caused by friction.

I'have derived the boundaries of the in-
tervals of parametric resonance in the
user’s manual (pp. 110-114)* for an ideal-
ized frictionless system, and I show an ap-
proximate equation valid for the system
with relatively weak viscous friction in the
instructor’s guide (pp. 73-76).* Figure 5
shows the intervals of instability that sur-
round the first five parametric resonances
as functions of the depth 7z of the square-
wave modulation. The central line of
each “tongue” in the diagram shows the
period T'=nT,,/2 that corresponds to ex-
act tuning to n-order resonance.

For small values of 72, the intervals sur-
rounding resonances of even orders (=2,
4) are very narrow compared to odd reso-
nances (# = 1, 3, 5). To understand why
resonances of even orders are so weak and
narrow, we should consider that the
abrupt changes of the moment of inertia
for, say, 7 = 2 resonance, induce both an
increase and a decrease of the angular ve-
locity only once during each natural pe-
riod. The oscillations grow only if the in-
crement of the velocity at the instant when
the weights are drawn closer is greater
than the decrement occurring when the
weights are drawn apart. This is possible
only if the weights shift toward the axis
when the rotor’s angular velocity is greater
in magnitude than it is when they shift
apart. Such conditions are easily fulfilled
for odd resonances because the weights
shift apart at extreme points where the ve-
locity is zero. For T'=T,,, we can fulfill the
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Figure 6. The phase trajectory and the graph of the angular
velocity of oscillations corresponding to parametric resonance

of the second order (T=T,).
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Figure 7. Intervals of parametric excitation at square-wave
modulation of the moment of inertia in the absence of friction
and at weak friction (for Q = 20 and Q = 10).

conditions for oscillation growth only be-
cause there is a (small) difference between
the rotor’s natural periods 77 and T3,
where T is the period with the weights
shifted apart and T; is the period with
them shifted together. This difference is
proportional to the depth of modulation
7 and vanishes when 72 tends to zero. Fig-
ure 6 shows the growth of oscillations at
the second-order parametric resonance.
Figure 5 shows that with the growth of
the depth of modulation 7, the even in-
tervals expand and become comparable
with the intervals of odd orders. For cer-
tain values of 72, both boundaries of in-
tervals with # > 2 coincide (we may con-
sider that they intersect). Thus, at these
values of 7, the corresponding intervals
of parametric resonance disappear. These
values of 7 correspond to the natural pe-
riods T} and T of oscillation (associated
with the weights far apart and close to
each other) whose ratio is 2:1, 3:1, and
3:2. For the corresponding values of the
modulation depth » and the period of

Figure 8. Stationary parametric oscillations: (a) at the upper
boundary of the principal interval in the case of sinusoidal mod-

ulation; (b) at the threshold of the third parametric resonance.

modulation 7, oscillations are steady for
arbitrary initial conditions.

When there is friction in the system,
the intervals of instability become nar-
rower, and for strong enough friction
(below the threshold), the intervals dis-
appear. Figure 7 shows the boundaries of
the first three intervals of parametric res-
onance in the absence of friction, for Q =
20 and for Q = 10. For any given value m
of the depth of modulation, only the first
several intervals (if any) of parametric
resonance can exist for which 7 exceeds
the threshold. Note the “island” of para-
metric resonance for z = 3 and Q = 20.
This resonance disappears when the
depth of modulation exceeds 45% and
reappears when 7 exceeds 66 %.

A smooth modulation of the
moment of inertia

When the moment of inertia [ of the ro-
tor is subjected to a smooth variation, the
angular momentum I ¢ (¢) changes in
time according to the equation

4 (1p)=- ©)
~-(19)=-De,

where —D¢ is the restoring torque of the
spring. Substituting into Equation 9 /()
from Equation 6 and taking into account
the expression wy’ = D/Ij, where I, =
2MIy? is the moment of inertia of the rod
(with the weights of mass M each in their
mean positions), we obtain

d — . 2,0
0 gl +m smat) ¢E
= ~wjd -2y
We added the drag torque of viscous
friction to the right-hand side of Equa-
tion 10. The computer program solves
this equation in real time during the sim-
ulation of oscillations at sinusoidal mo-
tion of the weights.’
"To obtain an approximate solution that
is valid up to terms of the first order in
the small parameter 7, we can, instead of

the exact differential equation of motion
(Equation 10), solve the following ap-

(10)
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proximate equation:
$+2p

+aj(1 - 27 sin ar) $=0. (n

Equation 11 is a special case of Hill’s
equation (Equation 1), with sinusoidal
time dependence of the parameter. It is
called Mathiew’s equation. The theory of
Mathieu’s equation has been fully devel-
oped, and all significant properties of its
solutions are well-known. A complete
mathematical analysis of its solutions is
rather complicated and is usually re-
stricted to determining the frequency in-
tervals in which the state of rest in the
equilibrium position becomes unstable: At
arbitrarily small deviations, the amplitude
of incipient small oscillations begins to in-
crease progressively in time. The bound-
aries of these intervals of instability de-
pend on the depth of modulation 2.

Even inside the intervals (when condi-
tions for parametric resonance are satis-
fied), if ¢ and ¢ are exactly zero simulta-
neously, they remain zero. This property
contrasts with the usual case of resonance
in which an external force acts upon the
system. In forced oscillations, the ampli-
tude begins to grow even from the state of
rest in the equilibrium position.

The application of the theory of Math-
ieu’s equation to the simulated system is
restricted to the linear order in 7z For fi-
nite values of the depth of modulation 7,
the resonant frequencies and the bound-
aries of the intervals of instability for the
simulated system differ from those pre-
dicted by Mathieu’s equation. In the
Physics of Oscillation’s user manual and in-
struction guide,”’ I present an approxi-
mate analytical solution to the exact dif-
terential equation of motion (Equation
8), valid up to the terms of the second or-
der in 7% for the main resonance and res-
onance of the second order, using the
method described in Mechanics.* In par-
ticular, for the main resonance, this solu-

tion gives the threshold condition that
coincides with the condition 7z, = 2/Q
(where m = 27m), obtained from consider-
ations based on the conservation of en-
ergy. For the second resonance, this ap-
proximate solution gives the following
threshold condition:

ﬁmin :2/\/57 Qmin :4/ﬁ2. (12)
The threshold for the second para-

metric resonance with smooth modula-
tion is also somewhat greater than with
square-wave modulation: compare the
expression for 7z, given by Equation 12
with 72,5, = V2/0 (where 7 = 277).

The simulation program in the user
manual lets us study parametric oscilla-
tions and obtain graphs of the variables
for arbitrarily large values of the depth of
modulation 7. Figure 8a shows an exam-
ple of steady oscillations occurring at the
upper boundary of the principal instabil-
ity interval (the frequency of modulation
W= 2ay). Its upper part corresponds to an
idealized frictionless system. The contri-
bution of higher harmonics (mainly of the
third harmonic with the frequency 3w/2)
cause the shape of the plots to deviate
from a sine curve.

For a smooth modulation of the mo-
ment of inertia, parametric resonance of
the third order is weaker and narrower
than for the second order (in contrast to
the case of square-wave modulation, for
which at m << 1 the third-order reso-
nance is stronger and wider than the sec-
ond-order resonance). This third-order
interval disappears in the presence of
very small friction. Figure 8b shows sta-
tionary oscillations at the threshold of
parametric resonance of the third order.

he programs in the Physics of Os-
cillations software are flexible and
sophisticated enough for use in student
research projects for exploring new

properties. Visualizing motion simul-
taneously with plotting the graphs of
different variables and phase trajecto-
ries makes the simulation experiments
very convincing and comprehensible.
These simulations bring to life many
abstract concepts of the physics of os-
cillations and provide a good back-
ground for the study of more compli-
cated nonlinear parametric systems
such as a pendulum whose length is pe-
riodically changed or a pendulum with
the suspension point periodically dri-
ven vertically.

Under certain conditions, such simple
mechanical systems, although described
by deterministic laws, exhibit irregular,
chaotic behavior. Discovery of chaotic
motions in simple deterministic dynam-
ical systems of different nature (physical,
chemical, biological) is one of the most
prominent recent scientific sensations. I
plan to include simulations of such sys-
tems in the second part of the Physics of
Oscillations. &
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